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Abstract
Two recently published ways of calculating the elastic constants for a crystal
under hydrostatic pressure are compared. They are shown to be equivalent
theoretically, though one is more convenient for numerical simulations. A
crystal of ferromagnetic iron in the body-centred cubic structure is used as an
example for comparing elastic constants calculated with these two methods.

Interest in the problem of crystal elasticity under pressure has been growing in recent years [1–
10]. A non-traditional approach to this problem is proposed in [7]; it uses the Gibbs free energy
G(P, T ) = E(P, T )+ PV (P, T ) instead of the energy E for estimating elastic constants under
pressure P:

Ci j = 1

V

∂2G

∂εi∂ε j

∣∣∣∣
P=const

. (1)

Hereinafter the Voigt notation is used; εi are Eulerian strains. The authors of [7] even argue
that ‘the elastic constants are not given by second derivatives of E with respect to strain’ for
systems under pressure. They also state that as long as the equilibrium structure in the system
at constant P and T is not at a minimum of E , the use of E causes difficulties in determining
the equilibrium structure at each P , whereas minimization of G at fixed P allows one to avoid
difficulties. In the cases of crystals with bct and hcp structures, the authors of [7] suggest the
use of the epitaxial Bain path (EBP) to determine the equilibrium structure and calculate the
elastic constants from formula (1).

Considering the case of T = 0 in this paper, we note that since strained crystal states
are usually non-equilibrium, it is impossible to determine the Gibbs free energy or any other
thermodynamic potential at such states. However, the formally introduced function

G(P, ε1, . . . , ε6) = E(P, ε1, . . . , ε6) + PV (P, ε1, . . . , ε6), (2)

makes the formula for elastic constants under pressure (1) proposed in [7] coincide with
the formula derived in [6] from the traditional definition of the elastic constants at P = 0.
The advantage of the approach discussed in [6] lies in the very fact that the formula for the
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calculation of the elastic constants under pressure is derived from the traditional definition [11]
rather than postulated. We also note that the use of the epitaxial Bain path might cause a number
of difficulties in numerical calculations of the elastic constants, while the method of calculation
proposed in [6] is more convenient for use in practice. Finally, we will compare the elastic
constants under pressure for ferromagnetic iron with the bcc structure (FM bcc Fe) calculated
with formulae [6] with those obtained in experiments and those calculated in [7, 8].

We begin with the determination of the equilibrium parameters of the crystal structure.
In our opinion, it is significantly simpler to determine equilibrium values of these parameters
through the energy E than through the function (2), since energy in an equilibrium structure
is minimum at a constant specific volume V . And it is much easier to carry out calculations
at constant volume than at constant pressure. In particular, having two lattice constants, a
and c, it is sufficient to determine the equilibrium value for just one parameter, ξ = c/a, to
determine a stable equilibrium structure at the constant volume V . The pressure corresponding
to the equilibrium lattice constants a0(V ) and c0(V ) can be easily determined by differentiating
energy with respect to volume:

P(a0(V ), c0(V )) = dE (a0(V ), c0(V ))

dV
.

Now let us consider the calculation of the elastic constants. Equations establishing a
relationship between the elastic constants and the energy variation caused by strain at any
hydrostatic pressure P were derived in [6]. It is also shown in [6] that the energy of the
strained crystal under hydrostatic pressure P varies as

�E = −P�V + �Ein, (3)

where �V is the volume variation under strain. Formula (29) from [6] can be written as

�Ein = V

2

∑
i, j

C̃i jεiε j . (4)

Here εi are Eulerian strains, and the values C̃i j form a symmetric matrix and depend on the
elastic constants Ci j , which are traditionally determined from Lagrangian strains ηi [11]:

Ci j = 1

V

∂2 E(V , {ηm})
∂ηi∂η j

∣∣∣∣{ηm=0}
. (5)

The relationships between C̃i j and Ci j are as follows [6]:

C̃ii = ξiξ j (Cii − P), i = 1, 2, . . . , 6;
C̃i j = ξiξ j Ci j , i = 1, 2, 3; j = 4, 5, 6;
C̃12 = C12 + P, C̃13 = C13 + P, C̃23 = C23 + P;
C̃45 = 4C45, C̃46 = 4C46, C̃56 = 4C56.

(6)

Here

ξi =
{

1, if i = 1, 2, 3,

2, if i = 4, 5, 6.

Equality (4), which is valid regardless of whether the strained crystal is in equilibrium or not,
allows the authors of [6] to easily generalize the usual Born stability conditions and get the
result known from [6]. For cubic structures, relationships (6) between C̃i j determining the
stability of the crystal under pressure and the elastic constants considered in the traditional
definition (5) were derived in [12].
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Figure 1. The elastic constant C̃ ′ for FM bcc
Fe as a function of pressure. Solid circles—
our results; open circles—results from [7, 8].
Experimental data: solid triangles—[16];
open triangles—[17]; open squares—[18];
solid squares—[19].

Addressing again [7], note that the strain induced change of function (2), which the
authors of [7] call the Gibbs free energy, is equal to �Ein as follows from (3). Therefore,
Ci j (1) axiomatically introduced in [7] will coincide with the values (6) derived in [6] from
the traditional definition of the elastic constants [11].

Thus, from the theory standpoint, calculation of the elastic constants under pressure with
the method described in [7] will give the same results as the calculation with the method
described in [6]. However, in practice it is much more complicated to get the result with
method [7] at the same accuracy as with method [6]. For example, if there are two parameters
of the crystal lattice, c and a, construction of the EBP to determine Ci j requires calculation of
function (2) in a 2D area surrounding the equilibrium value (a0, c0). The 2D area cannot be
infinitesimally small because of the finite accuracy of the numerical calculation of the strained
crystal energy. At the same time, in method [6] it is sufficient to calculate the strained crystal
energy as a function of only one variable. This not only reduces the quantity of computations
but also simplifies the verification of the calculated results. Our experience shows that if during
the calculation of the strained state energy the Fermi surface appears to have different topologies
in the equilibrium and strained states, the error of the calculation of the energy derivatives with
respect to strain grows significantly. There are more chances for such situations to occur in a
2D area than on a line; therefore, the probability of significant errors in the calculated elastic
constants is larger.

In conclusion, we compared the values of Ci j (1) calculated in [7] with our calculations of
C̃i j (6) obtained with the method of [6] for FM bcc Fe crystal. We used the full-potential
linear muffin-tin orbital method (FPLMTO) [13], which performed well in our previous
studies. The exchange–correlation functional in the form offered in [14] included the gradient
corrections [15]. All relativistic effects were taken into account except spin–orbital couplings
for valence electrons, which were treated in the scalar-relativistic approximation. Electrons
in 3s, 3p, 3d and 4s states were treated as valence electrons, and semi-core states were not
treated separately. The basis set was formed of orbitals of s, p, d, and f type. In the prism-
shaped Brillouin zone a mesh for integration over �k-space with the linear tetrahedron method
was constructed by dividing each edge into 50 parts (50 × 50 × 50 mesh). Figures 1 and 2
show the calculated elastic moduli characterizing shear strains: C̃ ′ = (C̃11 − C̃12)/2 and C̃44,
respectively. A solid curve corresponds to our calculation, and a dashed curve presents the
results from [7, 8]. In our calculations we thoroughly controlled the strain so that, on the one
hand, it was large enough to allow the specific energy variation to exceed the calculation error
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Figure 2. The elastic constant C̃44 for FM
bcc Fe as a function of pressure. Solid
circles—our results; open circles—results
from [7, 8]. Experimental data: solid
triangles—[16]; open triangles—[17]; open
squares—[18]; solid squares—[19].

and, on the other hand, it was so small that no electronic topological transitions occurred under
strain [20]. This condition determined the values of pressure at which the elastic constants
were calculated.

We believe that the significant discrepancy between the curves in figures 1 and 2 resulted
from the above discussed difficulties in ensuring acceptable accuracy, which are inherent to
the method of determining the elastic constants proposed in [7]. This conclusion is proved by
the experiment. According to our calculations, the conclusion drawn in [7] regarding the loss
of mechanical stability by FM bcc Fe crystal under high pressure is valid; however, the value
of pressure at which this structure loses stability appears to be two times higher.
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